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ABSTRACT: Habitat-use models are a powerful tool for improving our understanding of the rela-
tionships between animals and their environment. With the development of GIS, these models
have been used increasingly for the analysis of ecological data. However, they often suffer from
inappropriate model specifications, particularly the assumption of independence, which is essen-
tial in conventional statistical models, and may often be violated during the collection of spatial
data. Spatial autocorrelation occurs when the values of variables sampled close to each other are
not independent, representing a major problem that must be accounted for systematically. We
used a spatial eigenvector (SEV) generalized linear model framework to investigate the distribu-
tion of Balaenoptera edeni off Cabo Frio, in southeastern Brazil, an upwelling area impacted by
human activities (tourism and fisheries). Sighting data were collected during 94 boat trips con-
ducted between December 2010 and November 2014. A quasi-Poisson model using SEV indicated
that the use of habitat by the whales varied with depth and the distance from the coast, and pre-
dicted that whales would be found most frequently around Cabo Frio Island and along the coast-
line, apparently overlapping with their prey. We found that habitat use was better predicted with
the inclusion of SEV and that it is also possible to produce predictions of habitat use by correcting
for spatial autocorrelation without the use of expensive surveys conducted by specialized research
ships. This study provides useful insights into the habitat use of B. edeni in the southwestern
Atlantic Ocean, and represents an important contribution to the conservation of this data-deficient
species.
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INTRODUCTION

Understanding the processes that affect the distri-
bution of organisms is an important component of
conservation and management planning (Redfern et
al. 2006). Habitat use is a product of the interaction of
multiple factors that influence a given space simulta-
neously. Animals may select their habitats by adjust-
ing their behavior to a set of conditions that allows
them to survive, feed, and reproduce (Powell 2000).
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Recent advances in computing techniques, such as
Geographical Information Systems (GIS), led to the
rapid development of habitat-use models (Redfern et
al. 2006). These models are commonly used to inves-
tigate the relationships between animals and their
environment (Marubini et al. 2009, Corkeron et al.
2011, Garaffo et al. 2011, Gill et al. 2011, Pirotta et al.
2011, Anderwald et al. 2012, Weir et al. 2012, Tardin
et al. 2013), and their products are often used for the
development of management plans and actions, such
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as the designation of protected areas (Corkeron et al.
2011). Austin (2002) recommends prioritizing the se-
lection of the relevant resource variables (e.g. fish or
prey abundance) when modeling the distribution of a
species. However, as reliable information on these
variables is usually difficult to obtain, these data may
be substituted by direct (e.g. oceanographic) or indi-
rect (e.g. physiographic) proxies to represent the
complex relationships between a species and its en-
vironment (Austin 2002). Physiographic variables
may influence cetacean habitat use either directly or
indirectly and may be associated with biotic factors,
such as the availability of prey or the presence of
predators (Blasi & Boitani 2012). A number of studies
have demonstrated the influence of physiographic
variables on cetacean habitat use (e.g. Pirotta et al.
2011, Keller et al. 2012, Weir et al. 2012, Arcangeli et
al. 2013). Oceanographic variables, in turn, such as
sea surface temperature (SST), chlorophyll a (chl a)
concentration, and salinity, provide a more detailed
picture of the dynamics of a study area, and a grow-
ing number of studies of cetacean habitat use are
based on the analysis of these variables, facilitated
by recent advances in remote sensing technology
(e.g. Gill et al. 2011, Anderwald et al. 2012, Dalla-
Rosa et al. 2012, Forney et al. 2012).

The most commonly used approach to studying
habitat use in cetaceans is to conduct systematic line
transect surveys by vessels or aircraft, with the prin-
cipal objective of determining the abundance and
distribution of a species in the surveyed area (Pani-
gada et al. 2008, Marubini et al. 2009, Andriolo et al.
2010, Gill et al. 2011, Dalla-Rosa et al. 2012, Forney
et al. 2012, Keller et al. 2012). In developing coun-
tries, however, there are limited resources for the
funding of large research vessels, specialized equip-
ment, and scientists, which may limit the collection of
data to study cetacean habitat use and, consequently,
the potential for conservation actions (but see Dick &
Hines 2010). Under these circumstances, a common
solution is to employ field surveys to collect a wide
range of ecological and behavioral data, for which a
non-standardized or haphazard sampling schedule is
adopted, to optimize the cost—benefit ratio. As with
line transect surveys, the haphazard sampling may
lead to spatial autocorrelation (SAC) in the data col-
lected because spatially proximate observations tend
to have similar values (Fortin & Dale 2009), reflecting
a strong association (Dormann 2007).

SAC occurs when the values of variables sampled
close to each other are not independent (Dormann
et al. 2007). While SAC might be a goal of some eco-
logical studies, most often it is a problem, leading to

biased standard errors and estimates of parameters
(Lichstein et al. 2002). SAC may be derived from a
number of different biological or physical sources
(Griffith & Peres-Neto 2006). Geographically conta-
gious biotic processes include population growth,
dispersal, reproduction, survival, social organization,
movement, and competition (Griffith & Peres-Neto
2006, Dormann 2007). Physical drivers include barri-
ers to movement, travel corridors that may facilitate
movement, and spatially structured habitat charac-
teristics. While SAC affects ecological models, in-
cluding those used to analyze habitat use (Dormann
et al. 2007, Bailey et al. 2013), it is often overlooked in
the modeling of cetacean distributions (e.g. Canadas
et al. 20095).

Eigenvector spatial filtering (or the Moran eigen-
vector) is a powerful approach that compensates
explicitly for SAC. Griffith & Peres-Neto (2006) pro-
vide a detailed and succinct introduction to eigen
function spatial analyses. Briefly, this approach in-
volves the identification of spatial patterns repre-
sented by maps of eigenvectors as covariates in a
regression model to account for unexplained (latent)
spatial dependency. Habitat variables may be in-
cluded as non-spatial explanatory variables. Model
selection allows identification of which environmen-
tal factors influence habitat use after spatial depend-
ence is removed. This approach can be extended
easily to a generalized linear model (GLM). While
the use of eigenvectors in ecological modeling is
computationally intensive (Dormann et al. 2007), the
earliest studies showed some advantages in includ-
ing eigenvectors (Diniz-Filho & Bini 2005, Dormann
et al. 2007, Corkeron et al. 2011, Diniz-Filho et al.
2013, Thayn & Simanis 2013). They tend to reduce
errors of spatial misspecification, which increases
the strength of the model fit, and the normality and
homoscedasticity of the residuals (Corkeron et al.
2011, Thayn & Simanis 2013). In addition, spatial
eigenvectors may stabilize and accentuate the rela-
tive importance of the variables that may actually
influence habitat use by the species (Diniz-Filho
& Bini 2005, Corkeron et al. 2011, Diniz-Filho et al.
2013).

When the sampling design includes a haphazard
component and non-independent location data, the
use of eigenvector spatial filtering allows for the use
of the dataset, in contrast with other commonly used
modeling techniques, such as GLMs and generalized
additive models (GAMs) (Legendre 1993). This
approach may thus ensure the development of a
model based on sequential GPS locations for a spe-
cies or individual. One alternative analytical method
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is to construct an autoregressive model, but those are
computationally intensive and may be impractical for
large datasets (Griffith & Peres-Neto 2006). Another
potential solution is to exclude large numbers of data
points to create an independent dataset for analysis
(Dormann et al. 2007). However, for poorly known
species, the exclusion of repeated measures of the
spatial location of individuals may entail the loss
of valuable information on which to base reliable
management decisions (Harris et al. 2008). In fact,
Corkeron et al. (2011) presented a case study on how
sparse occurrence data from humpback whales
Megaptera novaeangliae and Bryde's whales Bal-
aenoptera edeni collected from non-systematized
surveys can be used to inform cetacean conservation
planning.

The Bryde's whale is one of the least known baleen
whales (Kato & Perrin 2008). The species ranges
from 40° N to 40° S, in tropical and temperate waters,
including the Indian, North and South Pacific, and
Atlantic Oceans (Kato & Perrin 2008). There have
been relatively few systematic surveys of B. edeni
(e.g. Zerbini et al. 1997, Best 2001, De Boer 2010,
Wiseman et al. 2011, Weir et al. 2012, Figueiredo et
al. 2015, Lodi et al. 2015, Pastene et al. 2015, L. A.
Pastene & S. Ohsumi unpubl.). The species is not
observed frequently in Brazilian waters, which may
be due to intensive whaling in the early to mid-20th
century (Andriolo et al. 2010).

The Brazilian Marine Mammal Survey Support
System (Sistema de Apoio ao Monitoramento de
Mamiferos Marinhos — SIMMAM) reports a paucity
of data for B. edeni off the Brazilian coast (SIMMAM
2014). Only 88 records were obtained between 1990
and 2014 along the entire Brazilian coast, which
extends for more than 8000 km. Most (73.9%) of
these records were of stranded animals, with only
26.1% derived from visual sightings (SIMMAM
2014). Previous studies indicate that B. edeni occurs
in deep water far off the Brazilian coast (Andriolo et
al. 2010). While coastal sightings are rare, this spe-
cies is found in relatively close proximity to the coast
in some parts of Brazil, such as Laje de Santos
(Gongalves & Andriolo 2006), Cabo Frio (Figueiredo
et al. 2015), and near the city of Rio de Janeiro (Lodi
et al. 2015). The occurrence of B. edeni near the coast
provides an unparalleled opportunity to gather more
data on this species in Brazilian waters. The Interna-
tional Union for Conservation of Nature considers
this species to be Data Deficient (IUCN 2013), while
the Brazilian National Plan for Large Cetaceans
emphasizes the need to investigate distribution pat-
terns for the designation of strict conservation areas

for B. edeni off the Brazilian coast (Rocha-Campos &
Camara 2011).

Recent research has shown that B. edeni occurs at
different depths, often far from the coast, and at rela-
tively high densities in upwelling areas (Wiseman et
al. 2011, Forney et al. 2012, Weir et al. 2012). How-
ever, few studies have modeled the influence of
dynamic oceanographic variables, such as SST and
chl a concentration, on the distribution of the species
(Corkeron et al. 2011, Forney et al. 2012, Weir et al.
2012). The present study investigates the influence
of physiographic and oceanographic variables on B.
edeni habitat use in the waters off Cabo Frio in the
state of Rio de Janeiro, southeastern Brazil, using
a GLM with spatial eigenvector filters. We hypo-
thesized that the individuals found off the coast of
Cabo Frio would be associated with physiographic
and oceanographic variables and that these whales
would be found more frequently in deep, cold waters
far from the coast.

MATERIALS AND METHODS
Study area and data collection

The study area (500 km?) is located off the coast of
Cabo Frio, in northeastern Rio de Janeiro state, Brazil,
and includes the municipalities of Arraial do Cabo,
Cabo Frio, and Buzios (Fig. 1). These 3 municipalities
play a prominent role in the state's coastal tourism
industry, which depends on the region's clear blue
waters and white sandy beaches. Coastal develop-
ment is unregulated and dynamic, and the total popu-
lation of the 3 municipalities exceeds 250 000 inhabi-
tants. The gross domestic product exceeds 4 billion
USD (Instituto Brasileiro de Geografia e Estatistica.
www.ibge.gov.br/ [accessed 1 may 2016]). The Cabo
Frio coast (22°50"21" S, 41°54' 37" W-23°00" 18" S, 42°
05'53" W) is steeply sloped and characterized by a
change in the orientation of the shoreline from north—
south to southwest-northeast (De Leo & Pires-Vanin
2006) (Fig. 1). During the austral spring and summer,
the more intense north-northeasterly winds, com-
bined with the meanders and eddies in the Brazil Cur-
rent, result in the mixing of 2 water masses (the Brazil
Current and the South Atlantic Central Water
[SACW]) and the formation of upwelling (Carbonel
1998, Coelho-Souza et al. 2012). Upwelling events
typically result in increased primary productivity and
high fish density and abundance, creating favor-
able foraging conditions for many cetacean species
(Keiper et al. 2005, Costa 2008).
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Fig. 1. Study area located in southeastern Brazil, Rio de Janeiro, showing isobaths. Grid cell colors represent kilometers of sur-
vey effort during which Balaenoptera edeni search and focal follow occurred. CFI: Cabo Frio Island

We conducted surveys with a mean duration of
5.7 h (range: 3.25-8.00 h) from December 2010 to
November 2012 and from January to August 2014
in a 6.5 m inflatable boat equipped with a 150 hp
outboard motor. The surveys followed a haphazard
route at approximately 20 km h™' to maximize study
area coverage (Fig. 1). When there were 2 or more
individuals, we conducted focal group follows. We
defined a group as individuals that swam no further
than 50 m from one another and engaged in the
same behavior (including coordinated breathing
and swimming) simultaneously (Tershy 1992). When
there was only one individual, we conducted focal
individual follows (Lehner 1992). When a whale or a
group of whales was spotted, it was followed at a
reduced speed (mean of approximately 10 km h™)
at a minimum distance of 50 m. The geographic co-
ordinates of the whale's or group's location were
recorded using a GARMIN VISTA CX GPS device
after every 500 m that the focal follow moved (Lehner
1992). This resulted in multiple GPS locations for a

given individual during a single day. On 5 May 2011,
for example, we monitored one Balaenoptera edeni
for 3.5 h, during which time, 7 GPS locations were
obtained in distinct portions of the study area.

Environmental data

Because prey distribution data were unavailable,
we used direct (oceanographic) and indirect (physio-
graphic) variables as proxies for prey distribution to
estimate B. edeni habitat use. We plotted all vari-
ables in a grid composed of 718 1-km? cells using the
ArcGIS-compatible Marine Geospatial Ecology Tools
0.8a64 (Roberts et al. 2010). To characterize the
study area, we estimated oceanographic and physio-
graphic parameters for every grid cell, as explained
below.

We used SST and chl a concentration to estimate
the influence of oceanographic parameters on
B. edeni habitat use. We obtained near-real-time
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SST measurements from the Advanced Very High
Resolution Radiometer (AVHRR) provided by the
Group for High Resolution Sea Surface Temperature
(GHRSST), which are available from the NASA
Physical Oceanography Distributed Archive Center,
PO.DAAC (http://podaac.jpl.nasa.gov/dataset/JPL_
OUROCEAN-L4UHfnd-GLOB-G1SST). These data
have a spatial resolution of 1 km. We obtained meas-
urements of chl a from MODIS (Moderate Resolution
Imaging Spectroradiometer), which is also available
at NASA's PO.DAAC (http://podaac.jpl.nasa.gov/
dataset/MODIS_Aqua_L3_CHLA _Daily_4km_R). The
spatial resolution of the MODIS data was 4 km. To
best capture the variability of oceanographic param-
eters within the study area, we obtained daily SST
and chl a measurements for the center of each grid
cell. The measurements were obtained for the same
days as the surveys, regardless of whether whales
were sighted. On a cell-by-cell basis we then calcu-
lated the mean, minimum, maximum, and standard
deviation of the SST and chl a values for the 94 sur-
vey days, as in previous studies (e.g. Azzellino et al.
2008).

Similarly, we obtained physiographic parameter
values (depth and distance to the coast) for the center
point of every grid cell surveyed. We created a depth
raster from nautical charts 1505 and 1508 obtained
from the Hydrography and Navigation Department
of the Brazilian Navy (https://www1.mar.mil.br/dhn/).
We defined the distance from the coast as the dis-
tance from the center point of the grid cell to the
nearest point of any type of land, e.g. continent,
island, rocky coast, etc., which we measured using
the ‘Near' tool in the ArcGIS 10.3.1® Spatial Analyst
toolbox. The distances were calculated in meters
based on Albers Equal Area Conic projection. We
plotted all GIS data in the SIRGAS 2000 geodesic
system.

Data analysis

For modeling purposes and to avoid problems of
pseudoreplication, we only used sighting and re-
sighting data on individual whales that could be
recognized reliably through natural marks and nicks
on their dorsal fins, following the protocol applied in
previous studies (Mazzoil et al. 2004, Espécie et al.
2010, Figueiredo et al. 2015, Lodi et al. 2015).

We built a standard GLM specification with a log
link function to investigate the influence of the
explanatory variables on the total number of B. edeni
individual sightings (including re-sightings) per grid.

If a single individual was sighted more than once in
a cell, the individual was only recounted if the
sightings occurred on different days. Since few
ecological studies are truly Poisson distributed
(Ver Hoef & Boveng 2007), we used a quasi-Poisson
distribution to account for overdispersion using the
function ‘dispersiontest’ from AER package v.1.2-5
(Kleiber & Zeileis 2008). To balance the uneven sur-
vey effort, we summed the log length of boat tracks
travelled per grid cell (in kilometers) and used this
(rather than calculated probabilities) as an offset in
the quasi-Poisson model to account for sampling
intensity.

To test for SAC on residuals, we used Moran's I
using the spdep package (v.0.5-56) in R (Bivand et al.
2013, Corkeron et al. 2011), which tests whether a
given set of features is clustered with an associated
attribute, dispersed, or randomly distributed. In
general, values of Moran's I close to +1.0 indicate
clustering, whereas values near —1.0 indicate dis-
persion, although it is necessary to verify the statisti-
cal significance of the values to determine whether
they are in fact different from a random distribution
(Griffith 1987).

Since our GLMs displayed SAC on the residuals
(I'=10.35, p < 0.001), we used an eigenvector spatial
filtering method to account for SAC using the 'ME’
function in the spdep package of the R environment
(Bivand et al. 2013). First, we generated the spatial
eigenvectors from a binary spatial neighborhood
matrix based on grid pixel adjacency, in which the
value is 1 when 2 pixels share a common boundary
and 0 when they have no common boundary (Dor-
mann et al. 2007). Then, we added the spatial eigen-
vectors in the GLMs, now called spatial eigenvector
generalized linear models (SEV-GLM). The SEV-
GLMs were also estimated with the 'ME' function
in the spdep package of the R environment (Bivand
et al. 2013).

After a visual inspection of the response variable
against each explanatory variable (see Supplement 1
at www.int-res.com/articles/suppl/m576p089_supp1.
pdf), we noticed some relationships were curvilinear.
Therefore, we fitted a polynomial term (quadratic)
to depth, standard deviation SST, minimum SST and
maximum SST.

To avoid algorithm errors in model selection,
biased parameter estimation, and inappropriate
confidence for a single model, we did not use the
backward stepwise selection procedure that has
been applied in some studies (Wittingham et
al. 2006). Rather, we used a set of 3 pre-defined mod-
els to investigate habitat use (see Supplement 2 at
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www.int-res.com/articles/suppl/m576p089_supp2.txt
for more details about the modeling procedure):

(1) Physiographic model:
total number of whale sightings = depth + (depth?) +
distance from the coast + offset (log (km))

(2) Oceanographic model:

total number of whale sightings = mean SST + maxi-
mum SST + maximum SST? + minimum SST + mini-
mum SST”2 + SD SST + SD SST? + mean chl a +
maximum chl a + minimum chl a + SD chl a +
offset(log(km))

(3) Full model:

total number of whale sightings = depth + depth? +
distance from the coast + mean SST + maximum SST
+ maximum SST? + minimum SST + minimum SST? +
SD SST + SD SST? + mean chl a + maximum chl a +
minimum chl a + SD chl a + offset(log(km))

Multicollinearity was also evaluated using a gener-
alized variance inflation factor (GVIF) applied to the
explanatory variables of the models using the car
package 2.0-19 (Fox & Weisberg 2011). Variables
with GVIF values of 10 or higher were removed from
the analyses, as was the case for maximum chl a
concentration and respective standard deviation
(Table 1). As in previous studies, we used a hierarchi-
cal partitioning analysis to estimate the contribution
of each variable (Quinn & Keough 2002, Gill et al.
2011) using the hier.part package 1.0-4 (Walsh &
MacNally 2013).

Table 1. Summary of Balaenoptera edeni occurrence on the

Cabo Frio coast, Rio de Janeiro, Brazil, for December 2010 to

November 2012 and February—-August 2014. Monthly en-

counter rate = number of sightings in a given month/number

of boat trips undertaken in the same month. *Numbers in

parentheses within the monthly encounter rate column use
individuals as a sampling unit

Month No. of No. of No. of Monthly en-
sightings ind. trips  counter rate
January 1 1 4 0.25 (0.25)
February 4 6 10 0.25 (0.6)
March 2 5 10 0.2 (0.5)
April 2 6 7 0.29 (0.86)
May 6 10 10 0.6 (1.0)
June 2 2 10 0.2 (0.2)
July 1 1 8 0.12 (0.12)
August 0 0 8 0
September 0 0 4 0
October 0 0 8 0
November 4 6 10 0.4 (0.6)
December 5 9 5 1.0 (1.8)

Since models were overdispersed, a quasi Akaike's
information criterion (QAIC) was used for model
selection using the '‘MuMIn’' v1.15.6 package in R
(Barton 2016). ¢ is the dispersion parameter esti-
mated from the global model and can be calculated
by dividing the model's deviance by the number of
residual degrees of freedom. In the calculation of
QAIC, the number of model parameters is increased
by 1 to account for estimating the overdispersion
parameter. Without overdispersion, ¢ = 1 and QAIC
is equal to AIC (Supplement 2). We used QAIC to
determine the best GLM model and, separately, we
used QAIC to determine the best SEV-GLM model.
Then, we used a likelihood ratio test to determine
whether the best SEV-GLM was better than the
correspondent GLM. The QAIC value reflects the
explanatory power of the independent variables, tak-
ing the degrees of freedom into account (Akaike
1973). As QAIC evaluates model fit by penalizing the
number of parameters, models with more parameters
than necessary will have higher QAIC values (Burn-
ham & Anderson 2004). The models can be ranked
according to their AIC values, with smaller values
representing a more parsimonious and, consequently,
more plausible model.

The prediction of our best model was calculated
from the means of the predictors during the surveyed
periods using glm.predict in the R stats package v.
3.4.0. We imported the predicted probabilities of
habitat use by the whales to ArcGIS 10.3.1. As in
Corkeron et al. (2011), we also mapped residuals
using the residuals.glm function in R stats package v.
3.4.0. We imported the residuals from both GLM and
SEV-GLM to ArcGIS 10.3.1.

RESULTS

A total of 94 boat surveys were conducted, cover-
ing 4970 km over 454.5 h. Balaenoptera edeni were
observed during 46.4 h (10.1% of total survey time),
with no sightings recorded between August and
October of any year (Table 1). In general, we sighted
at least 1 individual on 23 surveys (24.4%). On 16
surveys (69.6 %), we photo-identified 10 individuals,
of which 3 (33.3%) were seen on at least 4 different
surveys (Table 2). Individuals with no apparent
marks on the dorsal fin were sighted alone on 7
surveys (30.4%). We photographed 5 individuals
once and another 5 individuals multiple times. The
maximum individual re-sighting interval was 1113 d.
We sighted individuals alone on 12 d and in pairs and
trios on 6 d each.
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Table 2. Summary of Balaenoptera edeni individual sighting and re-sighting history on Cabo Frio coast, Rio de Janeiro, Brazil.
ID: identity code. Asterisks indicate individuals seen with calf

ID 1st sighting 2nd sighting 3rd sighting 4th sighting 5th sighting 6th sighting
001 11 Dec 2010 - - - - -
002+ 19 Jan 2011 25 Mar 2012 - - - -
003 21 Feb 2011 - - - - -
004+ 20 Apr 2011 21 Apr 2011 25 Mar 2012 8 May 2012 20 Feb 2014 8 May 2014
005 20 Apr 2011 21 Apr 2011 5 May 2011 7 May 2012 - -
006 18 Nov 2011 19 Feb 2014 30 Mar 2014 7 May 2014 8 May 2014 -
007 25 Mar 2012 7 May 2014 - - - -
008 07 May 2012 - - - -
009 07 Nov 2011 - - - - -
010 20 Feb 2014 - - - - -
Encounter rate
[ 70.00
[ 0.001 to 0.105
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[ 0.251 to 0.500
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Fig. 2. Encounter rates of Balaenoptera edeni on the Cabo Frio coast, Rio de Janeiro, Brazil, within 1 km? grid cells. Encounter
rate was calculated as the number of sighted whales in a given cell per kilometer surveyed in that cell. CFI: Cabo Frio Island

The overall sighting rate for the entire sampling of Cabo Frio (Fig. 2). Individuals were observed in
period was 0.38 sightings per kilometer, with areas where the water depth ranged from 17 to
whales being encountered most frequently at 2 100 m (mean = 44.8 m) and the distance from the

locations —near Cabo Frio Island and off the coast coast was between 0.2 and 7.1 km (mean = 1.9 km),
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with SSTs of 19.3-26.8°C (mean = 22.7°C) and
chl a of 0.2-39.8 mg m™ km™! (mean = 2.9 mg m™
km!). An overview of the oceanographic and
physiographic values for the study area is provided
in Table 3.

Moran's I (0.49, p < 0.001) found the residuals
had significant SAC. The best fitting SEV-GLM
was the physiographic model (Table 4). When we
compared the best SEV-GLM directly with the
corresponding GLM (Table 5), the addition of the
eigenvectors improved the model (likelihood ratio
test, p < 0.001), with differences between both
the coefficients and the significance of the vari-
ables (Table 5). Our best SEV-GLM indicated that
B. edeni habitat use is influenced by depth and
distance from the coast, retaining 5 eigenvectors
(Table 5). The hierarchical partitioning analysis
indicated that distance from
the coast contributed most to
the explanation of the model

a map of residuals from the GLM and SEV-GLM,
and Fig. 5 displays the linear combination of the
eigenvectors with their estimated coefficients and
shows the SAC pattern that is not explained by the
SEV-GLM. The pseudo-R? estimated for the best
SEV-GLM was 0.36.

Table 3. Summary statistics of study area environmental
characterization in relation to 4 explanatory variables in
Cabo Frio, Rio de Janeiro, southeastern Brazil

Explanatory variable

N Mean Median SD

Depth (m) 718 44.8 39.5 199
Distance to coast (km) 718 1.9 1.4 1.9
Sea surface temperature (°C) 718 22.7 222 24
Chlorophyll (mg m23 km™!) 718 2.9 1.4 43

Table 4. Standard generalized linear models (GLM) and spatial eigenvector gener-
alized linear models (SEV-GLM) used to test for Balaenoptera edeni habitat use in
Cabo Frio, Rio de Janeiro, southeastern Brazil. Lowest quasi Akaike's information

criterion (QAIC) indicated the best model (see '‘Materials and methods' for details).

(Table 6).
The best SEV-GLM model
predicted that the whales

would be found more fre-
quently around Cabo Frio
Island and along the open

minimum SST and maximum SST

The SEV-GLM in bold is the most parsimonious (presented in detail in Table 5).
SST: sea surface temperature. Polynomial terms were included for depth, SD SST,

coast (Fig. 3a), whereas the Model

corresponding GLM predicted

Coefficients

AlIC
GLM SEV-GLM

that the whales would be
found more frequently in areas
far from the coastline beyond
the 100 m isobath (Fig. 3b).
Our analysis of deviance
showed that the fitted values
explained the observed values
(null residual deviance: 549.6;
fitted model residual deviance:
374.2; p <0.001). Fig. 4 shows

Physiographic
Oceanographic

Full

Depth + Depth? + Distance to coast 560.9 506.3
Mean SST + SD SST + SD SST? + 563.9 521.0
Minimum SST + Minimum SST? +

Maximum SST + Maximum SST? +

Mean chlorophyll + Minimum chlorophyll

Depth + Depth? + Distance to coast + 548.4 513.9

Mean SST + SD SST + SD SST? +
Minimum SST + Minimum SST? +
Maximum SST + Maximum SST? +

Mean chlorophyll + Minimum chlorophyll

Table 5. Comparison among estimates for the best spatial eigenvector generalized linear model (SEV-GLM) and its correspon-
dent standard GLM for Balaenoptera edeni in the Cabo Frio region, Brazil. Eigenvector values correspond only to SEV-GLM

SEV-GLM GLM

Coefficient Estimate SE t P Coefficient Estimate SE t P
Intercept -3.22 0.05 -6.7 <0.001 Intercept -3.13 0.48 -7.7 <0.001
Depth 0.04 0.019 2.23 0.02 Depth 0.064 0.02 3.55 <0.001
Depth? -3.04 x 10* 1.77 x10™* -1.72 0.08 Depth? -3.04 x 107* 1.77 x 10 -2.9 <0.001
Distance to coast -2.02 x 10™* 3.78 x 107> -531 <0.001  Distance to coast -2.02 x 107* 3.8 x 10° -4.2 <0.001
Eigenvec43 10.1 2.57 4.35 <0.001

Eigenvec16 1.71 3.11 5.50 <0.001

Eigenvec121 6.09 1.88 3.23  <0.001

Eigenvec40 8.20 2.63 3.11 0.001

Eigenvec125 1.20 2.82 2.82 <0.001
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Table 6. Relative importance of each statistically significant

variable from the best spatial eigenvector generalized linear

model for Balaenoptera edeni in Cabo Frio, Rio de Janeiro,

Brazil. I: percentage likelihood, ascertained by hierarchical

partitioning, that each habitat variable contributes to varia-
tion in the presence of Bryde's whale

Variable Importance rank I(%)

Distance to coast 1 90.2

Depth 2 9.8
DISCUSSION

This is the first study to model Balaenoptera edeni
habitat use and the first to take into account SAC in
the Atlantic Ocean off the Brazilian coast (Cabo Frio).
In this study, we quantified the differences in the
estimates of coefficients and the predictions provided
by alternative models with and without the addition
of spatial eigenvectors. By correcting for SAC, our
predictions suggested a preference for patchy areas
close to Cabo Frio Island around Arraial do Cabo
municipality and other small islands around Cabo
Frio municipality (Fig. 3), instead of a less distinct
large, widespread area. Also, as found in Corkeron et
al. (2011), our mapped residuals from SEV-GLM
were substantially smaller and less clumped than
GLM, suggesting that SEV-GLM predicts Bryde's
whale sightings better than GLM.

Inspection of our mapped predictions showed the
whales are found more frequently at depths between
30 and 90 m and in the proximity of islands with a
rocky coastline. We hypothesize their presence at
these depths may reflect the distribution of their
prey. Previous data from the study area (Figueiredo
et al. 2015, Maciel et al. in press) indicated that B.
edeni use this area to feed and reproduce, suggest-
ing a degree of site fidelity. In the proximity of rocky
coastlines, B. edeni would be able to herd and trap
fish shoals to facilitate their capture, as observed in
other cetaceans (Heithaus & Dill 2006). Small school-
ing fish, such as Brazilian sardine Sardinella
brasiliensis and Atlantic thread herring Opisthonema
oglinum, and asscombrids, such as the chub mack-
erel Scomber japonicus, are known prey items for B.
edeni (Tershy 1992, Siciliano et al. 2004, De Boer
2010). The presence of large shoals of these fish may
influence the distribution of B. edeni, particularly
because such large predators have high energetic
requirements and must forage constantly (Costa
2008).

The range of depths at which B. edeni were most
frequently observed are consistent with the behavior
of S. brasiliensis (reported at depths of up 80 m, with
the largest shoals being found between 31 and 60 m;
Paiva & Motta 2000), O. oglinum (found at depths up
to 50 m; Murdy & Musick 2013), and S. japonicas
(reported between 50 and 200 m; Castro-Hernandez
& Santana-Ortega 2000). Data from the Rio de
Janeiro State Fisheries Federation (Fundacao Insti-
tuto de Pesca do Estado do Rio de Janeiro [FIPERJ])
from 2011 to 2014 suggest that these species were
the most common fish in the study area during our
study period (FIPERJ 2011, 2012, 2014). In addition,
the Cabo Frio region represents an important breed-
ing ground for S. brasiliensis in Brazilian waters (Sac-
cardo & Rossi-Wongtschowski 1991), and both O.
oglinum and S. japonicus form mixed-species shoals
with S. brasiliensis off Rio de Janeiro (Paiva & Motta
2000). The occurrence of S. brasiliensis is influenced
by cold, nutrient-rich waters, such as those of the
SACW (Paiva & Motta 2000), which are common off
Cabo Frio (Carbonel 1998). One of locations used
most commonly by the whales was near Cabo Frio
Island, an area of marked upwelling dynamics, with
depths of 70-90 m, which coincide with the environ-
ments in which S. brasiliensis and S. japonicas are
found (Paiva & Motta 2000). In B. edeni's preferred
habitat around the islands closer to Cabo Frio, depths
ranged from 20 to 40 m, which is also consistent with
the distribution of S. brasiliensis and O. oglinum.

Monthly sighting rates indicate that B. edeni is
found in the study area primarily in April and May
(Table 1), when S. brasiliensis are in their post-repro-
ductive period and occur in large shoals (Paiva &
Motta 2000). The timing of the peak B. edeni oc-
currence with the high abundance of S. brasiliensis
may have additional biological relevance given that
during this period, we sighted pregnant and lactat-
ing females, who may take advantage of improved
feeding opportunities to meet their high energetic
requirements. This reinforces the conclusion that the
coast of Cabo Frio is an important area for B. edeni
(Figueiredo et al. 2015).

Seasonal fluctuations in the occurrence of these
whales have also been observed in other regions. In
Gabonese waters, for example, B. edeni is the most
frequently sighted balaenopterid in May and July,
when they feed on Sardinella species (De Boer 2010).
In another upwelling area in the Gulf of California,
Mexico, these whales were sighted most frequently
while feeding on Pacific sardine Sardinops sagax
(Tershy 1992). On the South African coast, Pletten-
berg Bay is an important feeding area for Bryde's
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Fig. 3. Predicted habitat use for Balaenoptera edeni along the Cabo Frio Coast, Rio de Janeiro, Brazil, using quasi-Poisson gen-
eralized linear models with (a) and (b) without spatial eigenvectors. Grey circles indicate sighting locations. CFI: Cabo Frio Island
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whale, with a peak of sighting in the austral autumn,
associated with the annual northeastward migration
of sardines into KwaZulu-Natal waters (Penry et al.
2011).

A number of studies have shown that the distribu-
tion of B. edeni species may be influenced by a range
of physiographic and/or oceanographic variables.
Corkeron et el. (2011), for example, used 15 B. edeni
sightings off the Oman coast and SEV-GLM models
to study the influence of physiographic variables on
the distribution of B. edeni. They found that distance
to the coast and slope had the greatest influence on
whale distribution, which partly corroborates our
findings. Conversely, on the eastern African coast be-
tween Gabon and Angola, Weir et al. (2012) found that
the occurrence of B. edeni was correlated strongly
with SSTs cooler than 20.6°C, but not any physio-
graphic variables, which contrasts with our model.

While 23 d of sightings may seem like a small sam-
ple for the development of a reliable habitat-use

model when compared with other, better-studied
cetacean species, no models are available for the
understanding and prediction of habitat use by
Bryde's whale in the Atlantic Ocean. The results of
our study, which focused on the waters off Cabo Frio,
provide important new insights into how B. edeni use
the area, and which environmental variables may
shape its distribution off the Brazilian coast. This is
especially important because sightings of B. edeni
near the Brazilian coast are rare, and the waters off
Cabo Frio offer an excellent opportunity to survey
the species without the need for expensive ocean-
going vessels. One advantage of using distribution
models is that they can be updated and improved as
new sightings and environmental data become avail-
able (Canadas et al. 2005), refining our understand-
ing of the use of the environment by the animals.
Despite being computationally intensive, the SEV-
GLM used here is a powerful approach to remove the
SAC from residuals and improve model predictions.
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Cabo Frio is the second most important tourist des-
tination in the state of Rio de Janeiro, attracting more
than one million tourists every year (Prefeitura
Municipal de Cabo Frio. www.cabofrio.rj.gov.br/ [ac-
cessed in 1 May 2016]). As the region has scenic
beaches and transparent waters, it is popular for mar-
ine tourism, and it is used intensively for diving, fish-
ing, and other recreational activities by vessels of all
sizes. This traffic poses a serious threat to the B.
edeni population that visits the study area. Whales
may collide with vessels, for example, or avoid some
areas due to the intensity of the traffic or increase
their energy expenditure due to the penetrating
underwater noise caused by the concentration of ves-
sels. Although part of the study area is located within
a marine protected area (MPA), there is still no man-
agement plan which could be used to regulate the
different human uses or the number of vessels that
may travel within the reserve. For conservation man-
agers who must balance the interests of the people
and wildlife that use an MPA, this difference may be
fundamentally important. While the MPAs in our
study area were not originally designed to protect
cetaceans, our results indicate that the study area
may be important for B. edeni and emphasize the
need for government decision makers to include this
species in future conservation plans.

Our study may contribute to these efforts in 3
ways. First, on a local scale, our map predicts areas of
high B. edeni habitat use that can help to define the
priority areas for protection. The protection of these
areas would also potentially safeguard local fishery
resources, and biodiversity in general, given that
whales may act as top predators, and keystone or
sentinel species (Zacharias & Roff 2001, Roberge &
Angelstam 2004). On a national scale, our results
contribute to the understanding the distribution of B.
edeni along the entire Brazilian coast, especially
because this species does not engage in long latitudi-
nal migrations (Kato & Perrin 2008) and may be
under constant pressure from anthropogenic impacts,
particularly from oil and gas exploration, which are
common in offshore waters in the Cabo Frio area.
Second, from a conservation perspective, the study
provides valuable data on the occurrence and distri-
bution of a species listed as Data Deficient by the
TUCN. While recent efforts have encouraged the pri-
oritization of Data-Deficient species in conservation
programs, these species tend to be under-represented
when threats are evaluated, which may increase
their risk of extinction (Bland et al. 2015, Jetz &
Freckleton 2015). And third, our study was relatively
inexpensive in comparison with surveys that depend

on large, ocean-going vessels, and provides a model
that can be applied to other species and regions
where this type of information is needed, but re-
sources are scarce.
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